skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Knight, Nicholas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Holder-Brascamp-Lieb inequalities provide upper bounds for a class of multilinear expressions, in terms of L^p norms of the functions involved. They have been extensively studied for functions defined on Euclidean spaces. Bennett-Carbery-Christ-Tao have initiated the study of these inequalities for discrete Abelian groups and, in terms of suitable data, have characterized the set of all tuples of exponents for which such an inequality holds for specified data, as the convex polyhedron defined by a particular finite set of affine inequalities. In this paper we advance the theory of such inequalities for torsion-free discrete Abelian groups in three respects.The optimal constant in any such inequality is shown to equal 1 whenever it is finite.An algorithm that computes the admissible polyhedron of exponents is developed. It is shown that nonetheless, existence of an algorithm that computes the full list of inequalitiesin the Bennett-Carbery-Christ-Tao description of the admissible polyhedron for all data,is equivalent to an affirmative solution of Hilbert's Tenth Problem over the rationals.That problem remains open. 
    more » « less
  2. The matricized-tensor times Khatri-Rao product (MTTKRP) computation is the typical bottleneck in algorithms for computing a CP decomposition of a tensor. In order to develop high performance sequential and parallel algorithms, we establish communication lower bounds that identify how much data movement is required for this computation in the case of dense tensors. We also present sequential and parallel algorithms that attain the lower bounds and are therefore communication optimal. In particular, we show that the structure of the computation allows for less communication than the straightforward approach of casting the computation as a matrix multiplication operation. 
    more » « less